
You are trying to find the volume of a solid using cyclindrical shells.
The solid was formed by rotation around the x-axis.

What is the radius of a shell: x y either

Your integral and bounds should be with respect to: x y either

You are trying to find the volume of a solid using the disc method.
The solid was formed by rotation around the y-axis.

What is the radius of a disc: x y either

Your integral and bounds should be with respect to: x y either

You are trying to find the volume of a solid using the disc method.
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You are trying to find the area of a surface formed by rotation around the y-axis

What is the radius of a band: x y either

Your integral and bounds should be with respect to: x y either

You are trying to find the area of a surface formed by rotation around the x-axis
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Your integral and bounds should be with respect to: x y either
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2)Find α so that the length of the curve y = x3/2 from x = 0 to x = α is 56
27
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If L = 56
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, then we can solve the above equation for α:
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3)If two parallel planes intersect a sphere, show that the surface area of the part of the
sphere lying between the two planes depends only on the radius of the sphere and the dis-
tance between the planes, and not on the position of the planes.∫ b
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